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Methods 

Study Visits and Metabolic Testing 

Body composition analyses, assessment of resting energy expenditure, a three-stage, 

hyperinsulinemic-euglycemic pancreatic clamp procedure, a mixed-meal metabolic test, and a 24-hour 

assessment of plasma glucose, insulin and c-peptide concentration profiles were conducted in the 

Clinical and Translational Research Unit and the Center for Clinical Imaging Research at Washington 

University School of Medicine before and after participants achieved a targeted (~18%) weight loss. All 

inpatient testing occurred during two study visits, approximately 1-2 weeks apart. Assessment of resting 

energy expenditure and the clamp procedure were conducted during the first inpatient admission to the 

research unit, and the mixed-meal metabolic test plus 24-hour assessment of plasma substrates and 

hormones were conducted during the second inpatient admission to the research unit. In addition, fecal 

samples were collected from each subject before and after weight loss. 

Body Composition 

Body fat mass and fat-free mass were determined by using dual-energy X-ray absorptiometry, 

and intra-abdominal adipose tissue volume and intrahepatic triglyceride content were determined by 

using magnetic resonance spectroscopy.1  

Dual Glucose Tracer Mixed-meal Metabolic Test and 24-hour Blood Sampling 

Participants were admitted to the Washington University Clinical and Translational Research 

Unit in the afternoon and consumed a standard evening meal containing 50% of calories as 

carbohydrate, 30% as fat, and 20% as protein. In the morning, after participants had fasted overnight, a 

catheter was inserted into a forearm vein for infusion, and a second catheter was inserted into a radial 

artery to obtain arterial blood samples. At 0600 h, a primed, continuous infusion of [6,6-2H2]glucose 

(priming dose, 22.5 µmol/kg; infusion rate, 0.25 µmol/kg/min) was started and continued until 1300 h. At 

0900 h, after 3 hours of tracer infusion, participants ingested a 450 kcal liquid meal, containing 49 g of 

glucose mixed with 0.9 g [U-13C]glucose, 18 g of fat, and 22 g of protein, which was provided in 7 
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equally divided aliquots given every 5 minutes for 30 minutes (0900-0930 h). Blood samples were 

collected immediately before starting the glucose tracer infusion, before initiating meal ingestion (times 

-20, -10 and 0 minutes), every 10 minutes for the first 60 minutes, and then every 20 minutes for the 

remaining 3 hours to determine plasma substrate, hormone concentrations, and glucose tracer-to-

tracee ratios. After completing the mixed meal metabolic test, participants remained in the Clinical and 

Translational Research Unit until 0900 h the next day to complete the remainder of the 24-hour 

metabolic study. Liquid meals containing 50% carbohydrate, 35% fat, and 15% protein were provided at 

1300 h, 1700 h, and 2100 h, which were consumed in seven equally divided aliquots every 5 minutes 

for 30 minutes. The energy content of the meal was individualized based on each subject’s estimated 

total daily energy requirement, calculated as 1.25 times measured resting energy expenditure assessed 

by using a metabolic cart (TrueOne 2400, ParvoMedics, Sandy, UT). Blood samples were obtained 

every hour from 1300 h to 0100 h and then every 2 hours from 0100 h until 0900 h the next morning to 

determine plasma glucose, free fatty acid, insulin and C-peptide concentrations. 

Hyperinsulinemic-euglycemic Pancreatic Clamp Procedure  

Participants were admitted to the Clinical and Translational Research Unit in the afternoon and 

consumed a standard evening meal, containing 50% of calories as carbohydrate, 30% as fat, and 20% 

as protein. The following morning, after participants had fasted for about 10 h overnight, a catheter was 

inserted into a forearm vein for infusion, and a second catheter was inserted into a radial artery to 

obtain arterial blood samples. At 0600 h, a 9-h three-stage hyperinsulinemic-euglycemic pancreatic 

clamp procedure was started by infusing octreotide (45 ng/kg fat free mass/min) and replacement 

doses of glucagon (1.5 ng/kg fat free mass/min) and growth hormone (6 ng/kg fat free mass/min), 

which were maintained until the end of the study (a diagram below describes the stages of the clamp 

procedure). An intravenous infusion of insulin was started at 0600 h at a rate of 15 mU/m2 body surface 

area/min (stage 1) for 3 hours (initiated with an insulin infusion of 60 mU/m2 body surface area/min for 5 

minutes and then 30 mU/m2 body surface area/min for 5 minutes), and was increased to 25 mU/m2 
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body surface area/min (stage 2) for the next 3 hours (initiated with an insulin infusion of 100 mU/m2 

body surface area/min for 5 minutes and then 50 mU/m2 body surface area/min for 5 minutes), and 

then increased to 50 mU/m2 body surface area/min (stage 3) for the final 3 hours (initiated with an 

insulin infusion of 200 mU/m2 body surface area/min for 5 minutes and then 100 mU/m2 body surface 

area/min for 5 minutes).  A primed, constant infusion of [6,6-2H2]glucose (priming dose 22.5 µmol/kg 

body weight and 0.25 µmol/kg body weight/min infusion) was started at 0600 h, followed by an infusion 

of [U-13C]palmitate (6 nmol/kg fat free mass/min) at 0700 h. The infusion rate of [6,6-2H2]glucose and 

[U-13C]palmitate was reduced by 50% and 75% during stages 2 and 3 of the hyperinsulinemic-

euglycemic pancreatic clamp procedure, respectively, to account for the expected decrease in 

endogenous glucose production and adipose tissue lipolytic rates. Plasma glucose concentration was 

kept constant during stages 1 and 2 and maintained at ~100 mg/dL during stage 3 of the clamp 

procedure by infusing 20% dextrose enriched to 2% with [6,6-2H2]glucose.  

Plasma glucose and insulin concentrations achieved during each stage of the clamp procedure 

conducted after weight loss were purposely controlled to match the values obtained before weight loss 

in both the Diet and Surgery groups. Blood samples were collected immediately before starting the 
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glucose tracer infusion, and every 10 min during the final 20 minutes (3 samples) of each stage of the 

clamp procedure to determine plasma glucose and insulin concentrations, and both glucose and 

palmitate tracer-to-tracee ratios. The assessment of hepatic and adipose tissue insulin sensitivity was 

performed during low-dose (15 mU/m2 body surface area/min) and medium-dose (25 mU/m2 body 

surface area/min) insulin infusion to submaximally suppress glucose production and lipolysis. The 

assessment of skeletal muscle insulin sensitivity was performed during high-dose (50 mU/m2 body 

surface area/min) insulin infusion to adequately stimulate glucose disposal.2  Resting energy 

expenditure was determined by a metabolic cart with online expiratory gas exchange analysis (TruOne 

2400; ParvoMedics, Sandy, UT) from 0630 h to 0700h during the clamp procedure.3 

Weight Loss Interventions 

Diet group. Participants in the Diet group received weekly individual dietary and behavioral 

education sessions during the entire study period. All meals were provided to participants as liquid 

shakes (Optifast HP® Shake Mix, Fremont, MI) and prepackaged entrees (30% carbohydrate; 40% 

protein; 30% fat; 200 kcal/meal) prepared by the Clinical and Translational Research Unit Metabolic 

Kitchen to enhance compliance with low-calorie dietary therapy. Participants were instructed to keep 

daily food records and enter their data into the MyFitnessPal application (MyFitnessPal, Inc). Food 

records were evaluated by the study dietitian and behavioral psychologist, and the daily energy content 

of the meals was adjusted weekly as needed to achieve about a 1% decrease in body weight per week. 

After participants achieved about an 18% weight loss, energy intake was adjusted to prevent continued 

weight loss and maintain a stable body weight (<2% change) for 3 weeks before repeat testing was 

performed at 23±7 weeks after starting diet therapy.  

Surgery group. The gastric bypass procedure was performed by using standard laparoscopic 

techniques.4 A linear stapler was used to completely divide the stomach into a small (15-20 ml) 

proximal gastric pouch and a large distal gastric remnant. A Roux limb was constructed by transecting 

the jejunum 30-50 cm distal to the ligament of Treitz. The proximal cut end of the jejunum 
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(biliopancreatic limb) was anastomosed 75 -150 cm distally on the Roux limb by using a linear 

stapler.  The proximal end of the Roux limb was anastomosed to the proximal gastric pouch by using a 

stapled technique.  The first week after surgery participants consumed a liquid diet only. Progression to 

regular foods occurred 2-4 weeks after surgery. A study dietitian consulted with participants weekly by 

phone or in person to monitor body weight, review dietary intake and adjust dietary intake in order to 

meet the targeted weight loss goal. After participants achieved about an 18% weight loss, energy intake 

was adjusted to prevent continued weight loss and maintain a stable body weight (<2% change) for 3 

weeks before repeat testing was performed at 16±4 weeks after gastric bypass surgery.  

Management of Blood Glucose and Diabetes Medications 

Participants were provided with a glucometer and glucose test strips at the time of study 

enrollment and checked their blood glucose concentrations twice daily (before breakfast and before 

bedtime) by fingerstick throughout the study. Participants were instructed to stop taking oral and 

injectable diabetes medications at different time points before each admission to the Clinical and 

Translational Research Unit. Oral diabetes medications were discontinued 3 days before and insulin 

was discontinued 1 day before each admission, whereas glucagon-like peptide 1 receptor agonists 

were discontinued 2 weeks before the first admission and not restarted unless needed for glycemic 

control after second research unit admission.  During the period of medication withdrawal, blood 

glucose values obtained at home were reviewed regularly by the study physician. Participants were 

instructed to contact study medical staff when blood glucose was >200 mg/dl before breakfast or >300 

mg/dl before bedtime to obtain instructions for possible additional medical therapy. Blood glucose 

values were reviewed weekly throughout the study by the study nurse and physicians, and diabetes 

medications were adjusted every 1-2 weeks, as needed.   

Sample Analyses 

Blood samples. Plasma glucose concentrations were determined by using an automated 

glucose analyzer (YSI 2300 STAT plus; Yellow Spring Instrument Co, Yellow Springs, OH) and both 
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plasma insulin and c-peptide concentrations were determined by using electrochemiluminescence 

technology (Elecsys 2010, Roche Diagnostics). Plasma concentrations of leptin and high-molecular 

weight adiponectin were measured by using a commercially available radioimmunoassay kit (EMD 

Millipore, Burlington, MA) and enzyme-linked immunosorbent assay (ELISA) kit (R&D Systems, 

Minneapolis, MN), respectively. Plasma free fatty acid concentrations were measured by using a 

commercially available diagnostic kit (FUJIFILM Wako Diagnostics, Mountain View, CA). Plasma 

branched-chain amino acids (valine, leucine, and isoleucine) and short-chain acylcarnitines (propionyl 

carnitine [C3] and 2-methylbutyryl/isovaleryl carnitine [C5]) were analyzed by using liquid 

chromatography tandem mass spectrometry (LC-MS/MS). These metabolites were chromatographically 

separated by using a Thermo Vanquish UPLC system with a Zic-pHILIC (2.1 x 150 mm) 5µm column, 

and mass spectra acquired on a Thermo QExactive orbitrap mass spectrometer, as previously 

described.5 Metabolites were identified by matching accurate mass, retention time, and MS/MS 

fragmentation patterns to an in-house library of commercially available standards. Plasma bile acids 

concentrations were analyzed by adding isotopically labeled internal standards and using LC-MS/MS 

as previously described.6 Plasma glucose and palmitate tracer-to-tracee ratios were determined by 

using gas chromatography-mass spectrometry.7  

Fecal samples. DNA extraction, amplification of the V4 region of the 16S rRNA gene, and 

Illumina amplicon sequencing were performed at the University of California San Diego Center for 

Microbiome Innovation, according to the Earth Microbiome Project protocols.8 Sequence data were 

processed by using Quantitative Insights Into Microbial Ecology29 and sequences were deposited in the 

European Nucleotide Archive maintained at the European Bioinformatics Institute EBI-ENA (accession 

number EBI: ERP119960). Microbial sub-Operational Taxonomic Units were identified from sequences 

trimmed to 150 nucleotides by using the Deblur algorithm.10 Taxonomic assignment was performed with 

the GreenGenes v13.8 99% taxonomic reference database using the naïve Bayes classifier 

implemented in the q2-feature-classifier plugin,11 and bespoke taxonomic weights were provided to the 
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classifier by using the precompiled GreenGenes v13.8 V4 human-stool weights produced by the q2-

clawback plugin.12  

Beta diversity was calculated based on the sub-Operational Taxonomic Units relative 

abundance table by using the Bray-Curtis dissimilarity. Differential abundance testing was performed 

separately for each taxonomic level on features detected in at least 30% of samples with a mean 

relative abundance of 0.01%13 across all samples. Raw counts were modelled by using a negative 

binomial generalized linear model with sequencing depth as an offset. To analyze the within-subject 

change between groups by using fixed effects, a nested interaction formula was used with participant 

and time nested within treatment groups, and a custom contrast was specified to test the difference in 

the within-group change i.e. the group by time interaction. Means and 95% confidence intervals were 

estimated for the within-group differences at the phylum level. P-values were calculated for the group 

by time interaction at the genus level, and were adjusted for multiple comparisons by using the 

Benjamini-Hochberg false discovery rate and a 5% false discovery rate was considered statistically 

significant. Statistical analyses were performed by using R (The R Foundation for Statistical Computing, 

Vienna, Austria). 

Calculations 

Diabetes medication score. A diabetes medication score for each subject was calculated based 

on the number and dose of diabetes medications being taken, as described previously.14  For each 

medication, with the exception of insulin, a numerical score was calculated as the daily dose relative to 

the maximum recommended dose. For insulin, a numerical score was calculated as the daily insulin 

dose relative to a standard dose of 1U of insulin per kg of body weight per day. A composite diabetes 

medication score was calculated as the sum of each medication score.  

Insulin and glucose kinetics after mixed meal ingestion and over 24 hours. The insulin secretion 

rate was determined by using a stochastic deconvolution of the plasma C-peptide concentration.15-17 

The clearance rate of insulin was calculated as the ratio of the insulin secretion rate to the prevailing 
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plasma insulin concentration. The 4-hour postprandial and 24-hour area under the curves for plasma 

glucose, free fatty acid, C-peptide, insulin, and insulin secretion rate were calculated by using the 

trapezoid method. Total (endogenous and meal-derived) glucose rate of appearance, ingested glucose 

rate of appearance, and endogenous glucose rate of appearance were calculated as previously 

described.4  

Multiorgan insulin sensitivity. Hepatic insulin sensitivity (suppression of glucose rate of 

appearance into the systemic circulations) and adipose tissue insulin sensitivity (suppression of 

palmitate rate of appearance into the systemic circulations) was calculated during stages 1 and 2 of the 

hyperinsulinemic-euglycemic pancreatic clamp procedure, and skeletal muscle insulin sensitivity 

(stimulation of glucose rate of disappearance from the systemic circulations) was calculated during 

stage 3 of the clamp procedure as previously described.2 Whole-body insulin sensitivity was calculated 

as the glucose infusion rate during stage 3 of the clamp procedure relative to prevailing plasma insulin 

concentrations.  

β-cell function. β-cell function was assessed as the product of β-cell glucose sensitivity (the ratio 

of postprandial total areas-under-the-curve of insulin secretion rate to total areas-under-the-curve of 

postprandial plasma glucose) and whole-body insulin sensitivity (glucose infusion rate divided by the 

plasma insulin concentration during stage 3 of the clamp procedure).4,7 

Statistical Analyses 

The difference in the treatment response between the Diet and Surgery groups was evaluated by using 

analysis of covariance with the post-intervention value as the dependent variable, the study group as 

the independent variable, and the baseline value as the covariate. Because the two groups were well-

matched on potential confounding variables, no additional covariates were included. The adequacy of 

the fit of all models was evaluated by assessing regression residuals (Table S1-3). A p-value ≤ 0.05 

was considered statistically significant for the single predefined primary outcome (hepatic insulin 

sensitivity). All other (secondary) outcomes should be regarded as exploratory, therefore only the 95% 
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confidence intervals are provided for statistical inference. The within-group change in each outcome 

was evaluated by determining the mean and 95% confidence interval of the difference between the pre- 

and post-intervention values, which were estimated by using paired t-tests. Statistical analysis was 

performed by using SPSS version 23 (IBM SPSS, Chicago, IL). 

Participants and Study Design  

Thirty-three men and women with obesity and type 2 diabetes were enrolled in this study. 

Eighteen participants were enrolled in the low-calorie diet (Diet) group and 15 participants scheduled to 

have Roux-en-Y gastric bypass surgery at Barnes-Jewish Hospital (St. Louis, Missouri, USA) were 

enrolled in the Surgery group (Supplemental Figure 1 CONSORT Diagram). Four participants in the 

Diet group dropped out of the study (2 before starting the weight loss intervention, and 2 during the 

weight loss intervention) and 3 were withdrawn because they were unable to achieve the minimum 

targeted 16% weight loss. Four participants in the Surgery group dropped out of the study before 

surgery. Accordingly, 11 participants in the Diet and Surgery groups completed the study. All 

participants completed a comprehensive screening evaluation consisting of medical history and 

physical examination, a resting electrocardiogram, and standard blood tests. Eligibility criteria was used 

to determine eligibility for participation. All participants provided written informed consent before 

participating in this study, which was approved by the Institutional Review Board of Washington 

University School of Medicine in St. Louis, MO. 

Study Eligibility Criteria 

All participants met the following eligibility criteria:  

Inclusion criteria: 1) men and women aged 25 to 65 years, inclusive at the time of informed 

consent; 2) body mass index between 34.0 and 55.0 kg/m2 ; 3) diagnosis of type 2 diabetes based on 

HbA1C >6.5%, results of oral glucose tolerance test or medical history plus current use of anti-diabetes 

medications; 4) scheduled for Roux-en-Y gastric bypass surgery at Barnes-Jewish Hospital (Saint 

Louis, Missouri, USA) for Surgery group participants; and 5) provided written informed consent.   
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Exclusion criteria: 1) evidence of significant organ system dysfunction (e.g., severe pulmonary 

or kidney disease) or a disease that could affect the study outcome measures other than obesity and 

type 2 diabetes, or significantly increase the risk of the study procedures; 2) cancer or cancer that has 

been in remission for <5 years; 3) previous intestinal resection; 4) regular use of tobacco products; 5) 

use of medication that can affect the study outcome measures; 5) regular exercise for more than 90 

minutes per week; 6) women who are pregnant or lactating; 6) conditions that render subject unable to 

complete all testing procedures (e.g. aversion to needles, metal implants that prevent magnetic 

resonance imaging); 7) persons unable or unwilling to follow the study protocol; and 8) persons not able 

to grant voluntary informed consent 
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Figure S1. CONSORT Flow Diagram 
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Figure S2.  

Effect of weight loss on plasma branched-chain amino acids, C3 and C5 acylcarnitines and bile acids, 

and the composition of the gut microbiome in the Diet and Surgery groups.    

 

A, plasma branched-chain amino acids and B, C3/C5 acylcarnitines measured serially for 24 hours 

(gray bars represent time of meal consumption) and C, their respective 24-hour areas-under-the-curve 
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before and after weight loss induced by low-calorie diet (Diet, n=11) or Roux-en-Y gastric bypass 

(Surgery, n=7). The effect of weight loss on the 24-hour pattern of plasma branched-chain amino acids 

and C3/C5 acylcarnitines were different between groups, manifested by higher peaks in plasma 

branched-chain amino acids and C3/C5 acylcarnitine concentrations early after meal ingestion, 

followed by rapid reductions in circulating levels and lower plasma areas-under-the-curves after weight 

loss in the Surgery group than the Diet group. The ANCOVA-derived mean post-weight loss group 

difference is -0.34 (-0.16 to -0.05, 95% confidence interval) for branched-chain amino acids and  

-0.46 (-0.66 to -0.27, 95% confidence interval) for C3/C5 acylcarnitines. Plotted values are the mean ± 

SEM. D, total fasting plasma bile acids concentrations before and after weight loss in the Diet (n=11) 

and Surgery (n=9) groups. Post-weight loss values were higher in the Surgery group than the Diet 

group; ANCOVA-derived mean post-weight loss group difference is 0.76 (0.11 to 1.42, 95% confidence 

interval). E left, principal coordinates analysis of Bray-Curtis dissimilarity of sub-operational taxonomic 

units in the Diet (gray) and Surgery (blue) groups before and after weight loss; labels are group means 

and segments are the distance to individual samples. E middle, relative change in gut microbial phyla 

after weight loss in the Diet (black) and Surgery (blue) groups; values are the mean change within each 

group ± 95% confidence interval estimated by using negative binomial regression. E right, gut microbial 

genera that changed differently after weight loss induced by Surgery than Diet (Group by Time 

interaction false discovery rate <0.05). *Value after weight loss significantly different (false discovery 

rate <5%) from value before weight loss. Sample sizes for stool microbiome analyses are n=10 in the 

Diet and n=9 in the surgery groups. Abbreviations: AUC, areas-under-the-curve; PCoA, principal 

coordinates analysis.  
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Table S1. Remaining Regression Output from Analysis of Covariance Related to Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

*Diet group was coded as the reference in the treatment group coefficient.  

Intercept, beta coefficient relating the Before value (the covariate) to the After value, and the treatment 

group beta coefficient (the estimated difference between the mean After value in the Surgery group 

relative to the After value in the Diet group). To convert the values for glucose to millimole per liter, 

multiply by 0.05551. To convert the values for insulin to picomole per liter, multiply by 6.0. To convert 

the values for free fatty acid to grams per liter, multiply by 0.01.  

Variables Intercept 

Coefficient of 

baseline value for 

outcome variable 

Treatment 

group 

coefficient* 

Body weight (kg) 4.77 0.782 -1.09 

Body mass index (kg/m2) 1.44 0.788 -0.392 

Fat mass (kg) -3.95 0.793 0.579 

Body fat (%) -11.3 1.11 0.998 

Fat free mass (kg) -0.508 0.932 -1.32 

Intra-abdominal adipose tissue volume (cm3) -85.0 0.681 157 

Intrahepatic triglyceride content (%) 2.09 0.132 1.43 

Free fatty acids (mg/dl) 7.93 0.371 -0.851 

Glucose (mg/dl) 76.5 0.186 0.768 

Insulin (μU/ml) 9.56 0.119 -3.48 

HbA1c (%) 4.81 0.097 0.517 

High molecular weight adiponectin (μg/ml) 0.937 0.754 0.072 

Leptin (ng/l) 5.34 0.384 -8.53 
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Table S2. Remaining Regression Output from Analysis of Covariance Related to Table 2 

*Diet group was coded as the reference in the treatment group coefficient.   

Intercept, beta coefficient relating the Before value (the covariate) to the After value, and the treatment 

group beta coefficient (the estimated difference between the mean After value in the Surgery group 

relative to the After value in the Diet group). To convert the values for C-peptide to nanogram per 

milliliter, multiply by 0.331. Abbreviations: AUC, area-under-the-curve; FFM, fat-free mass; Ra, rate of 

appearance into the systemic circulation.   

Variables Intercept 

Coefficient of 

baseline value 

for outcome 

variable 

Treatment 

group 

coefficient* 

4-h meal glucose AUC (mg/dl × min × 103) 15.1 0.332 8.56 

4-h meal insulin AUC (μU/ml × min × 103) 6.86 0.246 1.34 

Total glucose Ra 4-h AUC (μmol/kg FFM/min × min) 2540 0.472 138 

Ingested glucose Ra 4-h AUC (μmol/kg FFM/min × min) 2030 0.498 -19.1 

Endogenous glucose Ra 4-h AUC (μmol/kg FFM/min × min) 1390 0.077 159 

24-h glucose AUC (mg/dl × min × 103) 96.9 0.233 32.3 

24-h free fatty acid AUC (mg/dl × min× 103) 4.59 0.448 2.67 

24-h insulin AUC (μU/ml × min × 103) 27.1 0.218 1.47 

24-h insulin secretion rate AUC (pmol/min × 103) 245 0.568 -31.4 

24-h insulin clearance rate (L/min) 1.80 0.516 0.114 
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Table S3. Remaining Regression Output from Analysis of Covariance Related to Table 3 

*Diet group was coded as the reference in the treatment group coefficient.   

Intercept, beta coefficient relating the Before value (the covariate) to the After value, and the treatment 

group beta coefficient (the estimated difference between the mean After value in the Surgery group 

relative to the After value in the Diet group). Abbreviations: FFM, fat-free mass; Ra, rate of appearance 

into the systemic circulation; Rd, rate of disposal from the systemic circulation. 

Variables Intercept 

Coefficient of 

baseline value for 

outcome variable 

Treatment 

group 

coefficient* 

Glucose Ra (Stage 1) (μmol/kg FFM/min) 3.89 0.360 0.252 

Glucose Ra (Stage 2) (μmol/kg FFM/min) 2.61 0.095 0.021 

Glucose Rd (Stage 3) (μmol/kg FFM/min) 47.4 0.465 -6.51 

Palmitate Ra (Stage 1) (μmol/kg FFM/min) 0.659 0.084 0.327 

Palmitate Ra (Stage 2) (μmol/kg FFM/min) 0.507 0.124 -0.044 

Beta cell function index 2.09 0.726 -0.706 
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